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We demonstrate that weak parametric interaction of a fundamental beam with its third harmonic field in Kerr
media gives rise to a rich variety of families of nonfundameftatiltihumped solitary waves. Making a
comprehensive comparison between bifurcation phenomena for these families in bulk media and planar
waveguides, we discover two types of soliton bifurcations and other interesting findings. The latter iGigludes
multihumped solitary waves without even or odd symmetry @ndmultihumped solitary waves with large
separation between their humps which, however, may not be viewed as bound states of several distinct
one-humped solitons.
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I. INTRODUCTION AND MODEL order states. Specifically, we analyze in full detail the struc-
ture and bifurcation phenomena of higher-order bright spa-
Recently, parametric wave mixing in Kerr media has at-tially localized modes. The spatial configuration is assumed
tracted significant attentioisee, e.g., Refs[1-3] where to be such that there is a well-defined propagation direction
continuous-wave interaction and parametric self trappingaind the beams are localized rintransverse directions, with
were investigated This theoretical activity has been backed n=1 representing a planar waveguide and2 a bulk me-
up by experimental advances, e.g., a scheme for quasiphadiam. Specifically we study models representi(igt1)-
matched third-harmonic generatigfHG) has been sug- dimensional [(1+1)D] and (2+1)-dimensional [(2+1)D],
gested[4]. However, in previous works devoted to spatial weakly anisotropic media with cubic nonlinearity, under the
solitary waves due to THG in planar waveguides, only fami-phase-matched condition that the fundamental wave is reso-
lies of fundamental self-trapped beams were considered. Inantly coupled to its third harmonic. This is a particular de-
Ref. [3], for example, where solitons due to third-harmonic generate case of solitons supported by the four-wave mixing
generation were considered for a bulk medium geometryprocesse§7], which is not completely understood yet in full
higher-order modes were not discussed in detail. By solitolgenerality. We assume that the interaction between the fun-
we mean a localized mode. Byigher-order we refer to damental and third-harmonic waves includes the effects of
beam shapes whose transverse intensity typically has a myparametric four-wave mixing, self-phase modulation, and
tipeaked structure and has higher energy than the singleross-phase modulation.
peaked fundamental state. We closely follow the derivation procedure of R&E],
Physically stationary states define the distribution of theassuming that the fundamental and the third-harmonic beams
fields between harmonics of self-trapped beams at a givehave the same linear polarization. The result is the following
value of the total power. Such stable stationary solitons mayormalized(dimensionlesssystem of coupled equations
appear as final states of beam evolution. Unstable stationary
solitons also play an important role in determining the initial
beam evolutionsee, e.g., Ref5]) providing a rich variety i—-+V2u—u+
of possible instability development scenarios and sometimes 9z
being attractors for intermediate beam evolution stages.
Hence, the knowledge of the set of all possible stationary- IW 1
soliton states and their stability gives a rough answer to the iO’E+V2W—aW+(9|W|2+ 2|ul?)w+ §u3=0, 1)
guestion:what type of output beams can we expect for a
given initial input beam?The complete information about
the existence and stability of higher-order soliton modes mayvhere u and w are the fundamental and third harmonics,
also be important for the design of all-optical devices withrespectively. Also for the case of spatial bea¥ifs= 92/ Ix?
sharp switching characteristi¢csee Ref[6] for an example ~ + #%/dy? in the (2+1)-dimensional case, o 2=gd%/9x? in
This paper concerns the first step in such a complete inthe (1+1)D case. The parameter measures the shift in the
vestigation of all possible localized modes of the THGpropagation constant, which is induced by the nonlinearity
model, namely the existence, but not stability, of higher-and is also dependent on the quality of wave-vector matching
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between the harmonics, wiita= 3¢ corresponding to exact 200>(a) = ==

matching, andz is the propagation distance. For the spatial i 2

soliton case, the dimensionless parametés the ratio of the 1500 ]

wave numbers of the harmonics and is equal to 3. Note that i ]

the systen(1) may also describe temporal pulse propagation : .

of resonantly interacting fundamental and third harmonics in P 100 B A R ——

optical fibers. For this physical situatidff= 92/ t? (t is the i /\/TT‘

retarded time variableand o is the absolute value of the I ']

ratio of second-order group velocity dispersions for the first 50 B E

and the third harmonics and may be any positive number. i c D Tor

Radially symmetric stationary beams are described by 0 . x . : :
real solutionsu(r) andw(r) that are defined by the system -100 50 0 50 a100 150 200 250
d?u sdu 1, ) 1, 400;('0) ‘ T '

— +-——u+|gu"+2w’|u+5u‘w=0, . QfiP ]

dr2 rdr 9 3 i ]

300 :

d’w sdw o 1, [ opR o 1

FJFFW aw+ (9w-+2u )W+§u =0. (2 P 200F J s
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Herer= \/x2+y2 ands=1 for the(2+1)D case, whereas 100- N'M T G 7

r=x ands=0 for the (1+1)D case. These localized solu- i To o

tions depend only on a single dimensionless parameter ol ‘ ‘ ‘ : ]
Analysis of the linear part of Eqg2) in the limit r—o 0 2 4 o 6 8 10

shows that conventional bright solitoith exponentially
decaying tails can exist only fora>0.

. . . . FIG. 1. (a) Bifurcation diagram for solitongsolid curve$ and
By “bright symmetric” in the remainder of this paper we (@ Bifurcat 1ad itongsolid curves

. - . guasisolitongdashed curvesof Egs. (1) in the (2+1)D case.(b)
shall mean(2+1)D solutions when the intensity of each lo- Expanded portion ofa) for the range & a<10. Examples of soli-

calized harmonic reaches a maximumratO and(1+1)D  {ons are shown in Figs. 2—7. Bifurcation points of two-wave soli-
solutions withu(r) =u(—r) andw(r)=w(—r). Thus, we  tons from one-wave soliton families are shown by filled circles. The
shall only seek these solutions on the intervalilG<e even  results related to quasisolitons are for stationary solutions with
in the (1+1)D case. Note further that Eq&) have odd  minimalamplitude of oscillatory tails; in that cask,is calculated
symmetry, that is, iffu(r),w(r)] is a solution then so is for the soliton core only. In this and all subsequent figures, units are
[—u(r),—w(r)]. Thus all solutions must come in pairs, the dimensionless.

second solution being simply a change in sigrphase shift

of a) of both harmonics. For the case=0, it is additionally  methods. These methods comprise a standard shooting
possible to have solutions that are odd in both harmonics, amnethod at fixedr, and a continuation method allied to solu-
which are neither odd nor even. The latter type of solutionsion using a relaxation method for solving an appropriately
we shall refer to as being “bright asymmetric.” In this pa- defined two-point boundary-value problem for E(®. This

per, we shall consider mainly the solitons of bright symmet-atter technique can trace paths of solutionsragaries. We

ric type, but shall also present some results about brighthoose to characterize these solitons by the value of normal-

asymmetric(1+1)D solitons. Dark solitonglocalized solu-  ized total power that is one of the conserved quantities of the
tions with nonzero asymptotigsre out of the scope of this system(1)

paper.
The casen<<0 also has physical meaning, but there one
should expect to findjuasisolitons which are almost local- Ptot:J (Jul?+3a|w|?)dA. ()
A

ized stationary states that have small periodic oscillations in
their tails. See, e.g[3,8—1Q for the definition, examples
and for some issues surrounding them. Quasisolitons in thislere the integration extends over the appropriate one- or
model will form the subject of another work. Here we shall two-dimensional infinite cross-sectigh
concentrate almost exclusively on the case0. The dependence d?,,; on « for a branch of solitons is
Using a direct analogy with the theory qf?) (second- usually, at least in the case of a fundamental solution, closely
harmonic generationsolitons(e.g., Ref.[11]), we start our related to its stability. A necessary condition for stability in
analysis from the so-called cascading limit whes1. In  the case of fundamental multicomponent solitons is typically
this limit w~u®/(9«) and the equation fon approaches the given by a generalized Vakhitov-Kolokolo/K) criterion
cubic-quintic nonlinear Schainger (NLS) equation. This [12], which often also appears to be a sufficient condition for
scalar equation possesses a familiar class of fundamentsbliton stability (see, e.g., Refd.13]). However, the com-
bright solitons consisting of a simple bell-shajgkere are plexity of Egs.(1) which, for example, possess collapse-type
also higher-order families in th+1)D casq. These funda- dynamics in thg2+1)D case, may lead to instability of fun-
mental solitons can then be used as a starting point in thdamental solitons even for branches that are supposed to be
search for families of stationary solutions using numericalstable according to the VK criteridi3]. Thus, below we use
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FIG. 2. Examples of different families of one wave solitons. In

all diagrams, the thick line corresponds to the third harmonic. FIG. 4. Examples of2+1)D two-wave solitons. Labeling of

examples corresponds to labeling of open circles in Fig. 1.

power versusx dependence only for classification of soliton
families, leaving a full-scale stability analysis for future con- follows from the second of Eqsl) atu=0:
sideration.

d®w, 1 dw,

_——— 3:
dr2+r ar awg+9wy=0. 4

Il. RESULTS FOR BULK MEDIA

First we present the results for tk2+1)D case. Figure 1

shows the variation of the normalized total powfgg;, with These single-frequency solitons differ from each other by
the normalized mismatch parameter for different types of  the number of zero crossings in their radial profiles so that
one-wave and two-wave localized solutions of the systBm  \ye denote the corresponding familiesTas(no crossing T,

with s=1. The corresponding soliton profiles at various one crossing T, (two crossings etc. Examples of one-

points along the presented branches are given in Figs. 2—%aye solitons belonging to differef families are shown in
The first class of localized solutions of the systéin

. . " X Fig. 2. Note that the normalized pow®% is constant for

consists of one-frequency soliton families for the third har-qach of theT. families. For example, for the fundamental
. . ) i . ,

monicwo, wh|eh exist for alla>0 and represent scalar_ Kerr sne-wave soliton familyT, (which are, in fact, Townes soli-

solitons described by the standard cubic NLS equation thal o of Ref.[14]) we haveP,,~11.70 for alla>0.

8 8 6 6
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FIG. 3. Examples of2+1)D two-wave solitons. Labeling of FIG. 5. Examples of2+1)D two-wave solitons. Labeling of

examples corresponds to labeling of open circles in Fig. 1. examples corresponds to labeling of open circles in Fig. 1.
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FIG. 6. Examples of2+1)D two-wave solitons. Labeling of
examples corresponds to labeling of open circles in Fig. 1. respond to points C and D on Fig(al] that the two different

. ) bifurcating branches have opposite signs of the@ompo-

The second class of solutions to Eq%) are genuinely  pent The fact that these bifurcations take place further illus-
two-wave bright solitons, described by families of localizedyrates the severity of the restructuring of the soliton profiles
beams with coupled fundamental and third harmonics. Thenat must take place; in the cascading limit the branch is
simplest way to obtain such solutions numerically is to fo"approximately of puras type, whereas at each bifurcation
low the two-wave soliton fam?lies from the cascading limit |y T, it is composed of purely a third-harmonic component
(large«) asa decreases. In this work, we concentrate on they, Figures 27 illustrate the complete restructuring process
result of following the lowest order two-wave soliton branch ,y; gepicting the soliton profiles in the vicinity of each bifur-
whose profiles have a simple one-hump form in the cascads;tion and turning point of thB(a) curve. Note finally that
ing limit. For this family, painstaking numerical continuation {,e two-wave soliton family also includes the simplest so-
reveals a highly complex solution path involving restructur- o self-similar{for which u(r)=w(r)] solution (Fig. 1,
ing of the soliton profile while the correspondiR§a) curve pointM) at =1, see Ref[15] for the details and also Ref.
undergoes several loogsee Figs. 1 and)8Inherent in each 2] \where its(1+1)-dimensional counterpart was also been
loop is a touch with one of th&; families. Such a touch gnsidered.
corresponds to a transcritical bifurcation from the pure The position of the bifurcation point from tHE, branch
solution, and notgfor example, from Figs. @),(d) that cor- . pe approximately calculated analytically. Linearization
of Egs. (1) around the solutiomvy(r) gives the eigenvalue
equation

d?u; 1du;

F FF‘FZWg(r)Ul:)\Ul, (5)
together with appropriate boundary conditions. Bifurcations
occur when\=1. This may also be viewed as the problem
of existence of localized states in the potentid(r)
= —ZWS(r) with eigenvalue\. Due to the lack of a closed
form analytical expression forvg(r), solutions of Eq.(5)
may be approximated by feeding in the numerical data for
W or by analytical techniques based on a variational ap-
proximation. Using the latter, based on a simple exponential
trial function, gives the result,= \/8a/3e~ ", Substituting
this into Eq.(5) and assuming a similar form of trial function
eh L for u;, one can use a Rayleigh-Ritz method to obtain
o 1z 3 4 s o 1 2 3 4 s a®=105.8. This agrees to within 2% with the numerical
resulta{’i™=104.2. Calculation of bifurcation points along
FIG. 7. Examples of2+1)D two-wave solitons and quasisoli- the higher-ordei; branches may in principle be carried out
tons. Labeling of examples corresponds to labeling of open circle®y the same method. However, this is less straightforward
in Fig. 1. technically because it requires the use of complicated forms
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FIG. 9. Spreading of the solutions bifurcated from fhein the
limit «a—0; (u,w) “out-of-phase” solitons, {,x) “inphase” soli-
tons. Labeling of the profiles is in agreement with labeling in Fig. 8.

of trial functions, and it is perhaps more instructive to rely on
numerical detection of the bifurcation points. Symmetry ar- FIG. 10. (a) Bifurcation diagram for symmetric solitorsolid

guments d!ctate thqt at e"?‘Ch blfurf:atlon paipj; there will curves and quasisolitongdashed curveof the (1+1)D version of
exist two different bifurcating solutions of E¢p): us(r) and  gqs.(1). (b) Expanded portion ofa) in the range & a=<10, 40
—uy(r). Moreover, each bifurcation is a transcritical and <p<65. Dotted curves emerging at zero correspond to integer
gives rise to a pair of two-wave branchgswy(r), multiples of the primary one-wave soluti@). Formally they rep-
+e&U4(r)], wheree is proportional tola— ayjf .- resent multisoliton states consisting of a concatenation of infinitely

The third class of solutions to Eggl) are the aforemen- separated single solitons. Points at which branches of two-wave
tioned quasisolitons that exist in the region of negative solitons.terminat.e by “pifurcating” from one of these multisolitons
We do not discuss quasisolitons here in any detail. A full@'® deplgted by filled C|rcl_es an_d all occurkm:_g. The inset tqa)
analysis will appear elsewhere. We simply make the com@"d the jump T—N) depicted in(b) are explained in the text.
ment that the brancB O P bifurcating fromT5; can be con- Ill. RESULTS FOR PLANAR WAVEGUIDES

tinued up to the boundary= 0 separating regular from qua- s | _ ©+1)D its di d
sisolitons. On the other side of the boundary a similar tis interesting to compare th@+1)D results discusse

quasisoliton state can be found with tiny oscillations in itsa_bove ‘.N'th 'ghose for the correspondu(ﬂﬁl)Dl case. The
tail [see Figs. 1 and(@9)]. _b|fu.rcat|on diagram related tq thé+1)D case is presenteq
We note that there 7are also higher-order two-wave solito in Fig. 10 and the corresponding examples of soliton profiles

o . L . i in Figs. 11-16. W highlight how, h
families that are not linked to the cascading limit solltonsr‘l:lre given in =gs 6. We now highlight how, together

- . . 2 ‘with many obvious differences in comparison to the diagram
These fgmme; bifurcate from thg (|>4).fam|lles. Eachof {5 the (2+1)D case in Fig. 1, there are also some striking
these bifurcating branches can be continued smoothly up imilarities as well. Note that in some respects the model for
a=0 like the family SOP. Figure 8 shows the branches tne (1+1)D case is simpler since the corresponding station-
from the next two one-frequency solutiofig andTs. We  ary system(2) with s=0 does not depend explicitly anand
conjecture that each;, branch fori >3 also exhibits a unique hence represents an autonomous dynamical system in four
bifurcation point, with thea-values of the bifurcation point dimensions. Finding solitons is then reduced to finding ho-
tending to zero as— <. Initially the two branches bifurcated moclinic trajectories in this 4D phase space.
from eachT; have the opposite phase of the third-harmonic  The first class of1+1)D localized waves of systerfi)
component. Figure 9 shows the soliton profiles of the “in-consists of one-frequency soliton families for the third har-
phase” [u(r=0)w(r=0)>0 close to the bifurcationand = monicw,, which exist for alla>0 and represent scalar Kerr
“out-of-phase” [u(r =0)w(r=0)<0] branches that bifur- solitons described by the standard cufdie-1)D NLS equa-
cate fromT,4. As a— 0, the difference between the branchestion that follows from the second of Eq&l) at u=0:
becomes negligible as the third-harmonic of all branches be-
comes out-of-phase with the fundamental component. Mean- d?wy
while the peaks of the third-harmonic broaden and “spread dx2
out” toward r =«. Close toa=0, solitons of the branches
differ only by the fine structure of their wings in the third- It can be readily solved exactly giving the well-known
harmonic componerisee Figs. &,t) and Figs. &c,d)]. unique single soliton solution

— awy+9w3=0. (6)
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FIG. 11. Examples of1+1)D two-wave and one-wave solitons.
Labeling of all examples corresponds to the labeling of the oper}
circles in Fig. 10. 0

FIG. 13. Examples ofl1+1)D two-wave solitons. Labeling is as
r Fig. 11.

2a B The second class dfl+1)-dimensional localized solu-
Wo(X) = —— secl \/Ex), ptot=4\/a_ (7) tions of Eqs.(1) consists of two-wave bright symmetric soli-

3 tons and is described by families of localized beams with
coupled fundamental and third harmonics. The simplest way
to obtain the lowest order two-wave soliton family is again

Egl Oftl:ﬁrr] &nhitv\]ﬁgﬁgv\llgctzlIgggiﬂﬂgﬁa?ﬁg:gﬁg; \évt'gtg?o continue numerically from solitons of the cascading limit
P (a>1) given approximately by the expression

consisting of a different number of infinitely separated single
solitons(7), families of which we denote b$,; (single soli-

In contrast to th€2+1)D case, strictly speaking there are

ton), S, (two solitong, S; (three solitony etc. In this work 6 s
we are mainly interested in families with an odd number of u(x)~ TiBooshx. w=~u®/(9a), (8)
separated soliton$S,; .1, 1=1,2,3 . .., but wealso investi- cos

gate “bifurcations” fromS,. Note that, fori>1, S in fact
denotes more than a single one-wave family, because eaethereB= 1+ 16/a. The first expression far(x) in Eq.(8)
single pulse that is glued together can be either positive ois the solution of the corresponding cubic-quintic NLS-type

negative. equation.
S —
1\((2) « = 26
ol
3 3
g1 ]

FIG. 12. Examples ofl+1)D two-wave solitons. Labeling is as FIG. 14. Examples of1+1)D two-wave solitons. Labeling is as
for Fig. 11. for Fig. 11.
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However, it is here that the similarity with the ¢21)-case
ends, as we shall now explain.

First, let us try to motivate what is happening at each of
the “bifurcations” from S; ; for which at first sight it seems
remarkable that each one occurs preciselgat9. Standard
bifurcation analysige.g., as in Ref[16]) allows us to find
the position of the single bifurcation point from the one-
wave soliton familyS,; (7) at «=9.0[point C in Fig. 10a)].

As in the(2+1)D case, the bifurcation is a transcritical with
one branch emerging to the left of the bifurcation point and
one to the right. This structure is confirmed by the inset to
Fig. 10 that shows that the branch emerging to the left
undergoes a foldat pointB), so that on a larger scale both
branches appear to bifurcate to the right.

Now it seems that this “local” bifurcation fron$, causes
a topological change in the four-dimensional phase space so
that a global event must also happen at this parameter value.
o 5 0 15 20 o 5 10 15 20 This global event is the possibility of gluing together several

i “ copies of theS; back to back and forming a new branch of
solitons with several large peaks that bifurcate fram 9.
Phenomenologically this is similar to what happens in the
SHG case when the parameter equivalent atopasses
) ) ) ... through 1[17,18. A key observation here is that in order to

The results of our numerical continuation from this limit- get a symmetri¢even solution, only an odd number of cop-
ing solution, upon decreasing is that, like in the(2+1)D a5 of theS, may be taken to form solitons in this way. As a
case, this branch also traces a convoluted path in thgonyenient shorthand for this global bifurcation of multi-
(P,a)-plane, involving four “bifurcations” from one-wave neaked solutions akv=9, we have referred to it as a local
soliton families(from the familiesS,, S;, Sg, andS;). A «pifyrcation” from S, 5, wherei=1,2,3. . . , although this
in the (2+1)D case, this branch connects to a self-similar;g strictly a misnomer.
solution ata=1 [the pointO in Fig. 10b)]. In this case, the Numerical continuation beyond poir® of Fig. 10a)
self-similar solution is expressible in closed analytical formghaws that the two-wave soliton branch approache.0
as from the left, where it bifurcates from ths; asymptotic

one-wave family that has alternative phase between each
u(x)=asechx, w(x)=bu(x), 9 single-soliton component. However, we find that this is only
one of a total ofour symmetric two-wave solitons that come
where the parametdris the real root of the cubic equation OUt Of Sz. There are eight in total if you include the change
6303—3b%+17b+1=0, and a?=18/(1&%+3b+1). of sign of bothu and w. The second t_nfurcates to the left
from the samdalternating phageS; family and differs only
o e in that the first harmonic has the opposite sign. A represen-
(w) a=10 (v «=10 tative of this branch, corresponding to pokitin Fig. 10@a),
is shown in Fig. 1#h). The two other branches exist far
7 7 7 ] >9 and bifurcate from th&; family where all peaks are in
3 3 phase (positive, and representatives are shown in Fig.
ol ol 16(u,v). With the increase of (cascading limit these com-
plex multihumped solitons keep their general structure intact,
‘ e but become more localized. These two branches are not
o 2z 4 & & 10 0o z 4 6 8 10 shown in the bifurcation diagrar(Fig. 10 but their P(«a)
curves lie very close to each other and to Thecurve to the
2 S — B — right of the bifurcation point.
(w) a=10 () a=10 A similar bifurcation picture is observed at=9.0 for
bifurcations fromSg; and S; one-wave families. However,
s | ] s | | because of the increase of the number in possible one-wave
5 3 multisoliton families themselves, the number of the corre-
of or sponding bifurcated two-component branches also increases.
For the even solitons considered in this work we have the
_ L 4 L following formula to calculate the number of two-wave sub-
o z 4 6 8 10 o 2z 4 6 8 10 families bifurcating from one-wav&, family: N;=2(+17
(double that if we count the change signswénduv). For

FIG. 16. Examples ofl+1)D two-wave solitons, which are not €xample, there are 16 branches that bifurcate fr§m
directly linked to the two-wave solitons of the cascading limit. La- branches that have=84 ata«=9. Note that in the bifurca-
beling is as for Fig. 11. tion diagram of Fig. 10, in order to clutter, only branches

FIG. 15. Examples ofl+1)D two-wave solitons. Labeling is as
for Fig. 11.
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FIG. 17. Bifurcation diagram from the first three one-component  # | ® L, i
families S, i1=1,2,3. Asymmetric familyS, is shown by a thick at s
line.
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directly linked to the cascading limit two-wave family are x x

shown. Close to bifurcation points, the third-harmonic com-

ponents of the depicted branches have neighboring humps of FIG. 19. Examples of asymmetric solutions bifurcated from the
alternating sign and first-harmonic components have alfamily S. Labeling of the profiles is in agreement with Fig. 17.
humps of the same sign. Note that these branches all bifur-

cate to the left ofr=9. For the branches that bifurcate to the Single solitons with slightly overlapping tails. However,
right not all third harmonic neighboring humps alternate inSome of these partial solitons have out-of-phasand w
sign. components and henoannot exisbn their own(i.e., with-

It is important to note that none of the multihump soliton OUt being in superposition with other “partial” solitons
branches bifurcating to the left af=9 can be viewed as  Figure 17 shows something even more striking—that
bound states of single partial solitons. Indeed, single onethere is also a “bifurcation” from thes, family. However,
hump solitons of Eqs(1) alwayshaveu andw components the solitary waves that bifurcate from there are not bright
inphase(of the same signfor «<9.0, whereas some of the Symmetric but in fact arasymmetricsolitons, see Fig. 19.
individual humps of the of multihump structures bifurcating AlSO at least one of these asymmetric solutions is born in a
to the left fromS; (i>1) families haveu andw components symmetry-bregklnqpnchfork) blfurcaFlon from one of the
of different signs. To illustrate this point we show in Fig. 17 Symmetric soliton branche@t the pointO,s, see Fig. 1J.
an enlarged bifurcation diagram in the vicinity @=9 cov-  Thus there is a branch of asymmetric solitons that connects
ering the first three familiesS;, i=1,2,3. Some of the cor- Symmetric solitons W|th_a branch of asymptotic antisymmet-
responding examples of soliton profiles plottedrat 8.6 are  'iC solitons (the S, family). We conjecture that there are
given in Fig. 18. As they approach=9.0, the separation similar asymme_trlc solitons that “bifurcate” fron§; at «
between each individual humga “partial soliton”) in- =9 for all even;.

creases and the state begins to approach a concatenation ofln contrast to the(2+1)D case, we have found no ex-
amples(at least considering all bifurcations fro8}; , ; with

, , ‘ . ‘ ‘ 2i+1<7) of two-wave solitons that survive down to=0

(81) «=86 (82) a=a8 where they might form a connection with branches of qua-
1t ] " ] sisolitons existing forx<<0. Instead, a representative branch

3 3 coming from T, bends abruptly(at R) at which point«

3 3 increases through the poituntil it reachesT at a~3.65,

it 1 it ] where another nonlocal bifurcation occurs. In this process,

the third harmonic gradually forms a core with weakly sepa-

-2 : : -2 : : rated wings. AtT, the latter become completely separated

z = . one-wave solitonfsee Fig. 18s,1)]. The solution at the point

T can thus be viewed as a direct sum of two well-separated

one-wave solitons and the soliton at polit BeyondT we

were unable to find any similar solutions. This nontrivial

“jump” bifurcation is indicated by the vertical arrow in Fig.

10.
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IV. CONCLUSION
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x x

In conclusion, we have investigated and classified higher-
order soliton families and bifurcation phenomena due to
FIG. 18. Examples of the two-wave solitons close to bifurcationfesonant parametric interaction of a fundamental frequency
point at a=9. Weak componenti(x) is enlarged in two bottom Wwave with its third harmonic.
plots. Labeling of the profiles is in agreement with Fig. 17. In the case of(2+1)D solitons the picture is consistent
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with standard theories, albeit the branch we followed fromanother, less straightforward way to create stationary higher-
the cascading limit connects several distinct soliton types iorder modes. This may find application in many fields of
a nontrivial way. Also the structure of the sets of branchegphysics where parametric interactions take place.

we found to approach the limi#=0 could do with further Stability of the newly discovered soliton families remains
investigation, perhaps using singular perturbation theoryan open question, especially for ttie+1)D case. Although
The relation of these states for positizeto quasisolitons for  ysually higher-order soliton families are subject to one of
negativea will be addressed elsewhere. several types of instability, some exceptions are kn¢see,

In contrast, in the1+1)D case the bifurcation diagram is e g. [21]) and thus a careful stability analysis is worth doing.
less clear cut and we have found at least two featlijéie  For the conventional bound-state solitons of NLS-type sys-
nonlocal bifurcation of multihumped two-frequency solu- tem of equations, there is practically no hope of stability as
tions that are a consequence of the local bifurcation from thgnhown e.g., in Ref.22]. However, for the system under con-
one-humped one-frequency solitoncat9, and(ii) the so-  sjderation there is aeal possibility of detecting stable mul-
called jump bifurcation at the poinfl. The first of these is  tihump solitons because of the abovementioned fact that at

particularly intriguing since not only symmetric multi- |east some of them cannot be viewed as bound states of two
humped states are formed in this way, but also asymmetrigr more single(one-hump solitons.

ones. The second novel bifurcation, the jump, appears related
to, but not the same as, the so-calledit-flip bifurcation

[19]. A dynamical-systems-theory explanation of these new ACKNOWLEDGMENTS
bifurcation events, perhaps using the Lin-Sandstede method
as in Ref.[18], would be most interesting. The authors acknowledge the use of computing facilities
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states cannot be viewed as bound states of several distinttonal University. A.V.B. and R.A.S. are indebted to O.
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