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Higher-order nonlinear modes and bifurcation phenomena due to degenerate parametric
four-wave mixing
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We demonstrate that weak parametric interaction of a fundamental beam with its third harmonic field in Kerr
media gives rise to a rich variety of families of nonfundamental~multihumped! solitary waves. Making a
comprehensive comparison between bifurcation phenomena for these families in bulk media and planar
waveguides, we discover two types of soliton bifurcations and other interesting findings. The latter includes~i!
multihumped solitary waves without even or odd symmetry and~ii ! multihumped solitary waves with large
separation between their humps which, however, may not be viewed as bound states of several distinct
one-humped solitons.

PACS number~s!: 42.65.Tg, 05.45.Yv, 42.65.Ky
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I. INTRODUCTION AND MODEL

Recently, parametric wave mixing in Kerr media has
tracted significant attention~see, e.g., Refs.@1–3# where
continuous-wave interaction and parametric self trapp
were investigated!. This theoretical activity has been backe
up by experimental advances, e.g., a scheme for quasip
matched third-harmonic generation~THG! has been sug
gested@4#. However, in previous works devoted to spat
solitary waves due to THG in planar waveguides, only fam
lies of fundamental self-trapped beams were considered
Ref. @3#, for example, where solitons due to third-harmon
generation were considered for a bulk medium geome
higher-order modes were not discussed in detail. By sol
we mean a localized mode. Byhigher-order we refer to
beam shapes whose transverse intensity typically has a
tipeaked structure and has higher energy than the sin
peaked fundamental state.

Physically stationary states define the distribution of
fields between harmonics of self-trapped beams at a g
value of the total power. Such stable stationary solitons m
appear as final states of beam evolution. Unstable statio
solitons also play an important role in determining the init
beam evolution~see, e.g., Ref.@5#! providing a rich variety
of possible instability development scenarios and someti
being attractors for intermediate beam evolution stag
Hence, the knowledge of the set of all possible stationa
soliton states and their stability gives a rough answer to
question:what type of output beams can we expect fo
given initial input beam?The complete information abou
the existence and stability of higher-order soliton modes m
also be important for the design of all-optical devices w
sharp switching characteristics~see Ref.@6# for an example!.

This paper concerns the first step in such a complete
vestigation of all possible localized modes of the TH
model, namely the existence, but not stability, of high
PRE 621063-651X/2000/62~3!/4309~9!/$15.00
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order states. Specifically, we analyze in full detail the str
ture and bifurcation phenomena of higher-order bright s
tially localized modes. The spatial configuration is assum
to be such that there is a well-defined propagation direc
and the beams are localized inn transverse directions, with
n51 representing a planar waveguide andn52 a bulk me-
dium. Specifically we study models representing~111!-
dimensional @~111!D# and ~211!-dimensional @~211!D#,
weakly anisotropic media with cubic nonlinearity, under t
phase-matched condition that the fundamental wave is r
nantly coupled to its third harmonic. This is a particular d
generate case of solitons supported by the four-wave mix
processes@7#, which is not completely understood yet in fu
generality. We assume that the interaction between the
damental and third-harmonic waves includes the effects
parametric four-wave mixing, self-phase modulation, a
cross-phase modulation.

We closely follow the derivation procedure of Ref.@2#,
assuming that the fundamental and the third-harmonic be
have the same linear polarization. The result is the follow
normalized~dimensionless! system of coupled equations

i
]u

]z
1¹2u2u1S 1

9
uuu212uwu2Du1

1

3
u* 2w50,

is
]w

]z
1¹2w2aw1~9uwu212uuu2!w1

1

9
u350, ~1!

where u and w are the fundamental and third harmonic
respectively. Also for the case of spatial beams¹2[]2/]x2

1]2/]y2 in the ~211!-dimensional case, or¹2[]2/]x2 in
the ~111!D case. The parametera measures the shift in the
propagation constant, which is induced by the nonlinea
and is also dependent on the quality of wave-vector match
4309 ©2000 The American Physical Society
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4310 PRE 62KAZIMIR Y. KOLOSSOVSKI et al.
between the harmonics, witha53s corresponding to exac
matching, andz is the propagation distance. For the spat
soliton case, the dimensionless parameters is the ratio of the
wave numbers of the harmonics and is equal to 3. Note
the system~1! may also describe temporal pulse propagat
of resonantly interacting fundamental and third harmonics
optical fibers. For this physical situation¹2[]2/]t2 (t is the
retarded time variable! and s is the absolute value of th
ratio of second-order group velocity dispersions for the fi
and the third harmonics and may be any positive numbe

Radially symmetric stationary beams are described
real solutions,u(r ) andw(r ) that are defined by the syste

d2u

dr2
1

s

r

du

dr
2u1S 1

9
u212w2Du1

1

3
u2w50,

d2w

dr2
1

s

r

dw

dr
2aw1~9w212u2!w1

1

9
u350. ~2!

Herer[Ax21y2 ands51 for the~211!D case, whereas
r[x and s50 for the ~111!D case. These localized solu
tions depend only on a single dimensionless parametea.
Analysis of the linear part of Eqs.~2! in the limit r→`
shows that conventional bright solitons~with exponentially
decaying tails! can exist only fora.0.

By ‘‘bright symmetric’’ in the remainder of this paper w
shall mean~211!D solutions when the intensity of each lo
calized harmonic reaches a maximum atr 50 and ~111!D
solutions withu(r )5u(2r ) and w(r )5w(2r ). Thus, we
shall only seek these solutions on the interval 0<r<` even
in the (111)D case. Note further that Eqs.~2! have odd
symmetry, that is, if@u(r ),w(r )# is a solution then so is
@2u(r ),2w(r )#. Thus all solutions must come in pairs, th
second solution being simply a change in sign~a phase shift
of p) of both harmonics. For the cases50, it is additionally
possible to have solutions that are odd in both harmonics
which are neither odd nor even. The latter type of solutio
we shall refer to as being ‘‘bright asymmetric.’’ In this pa
per, we shall consider mainly the solitons of bright symm
ric type, but shall also present some results about br
asymmetric~111!D solitons. Dark solitons~localized solu-
tions with nonzero asymptotics! are out of the scope of thi
paper.

The casea,0 also has physical meaning, but there o
should expect to findquasisolitons, which are almost local-
ized stationary states that have small periodic oscillation
their tails. See, e.g.,@3,8–10# for the definition, examples
and for some issues surrounding them. Quasisolitons in
model will form the subject of another work. Here we sh
concentrate almost exclusively on the casea.0.

Using a direct analogy with the theory ofx (2) ~second-
harmonic generation! solitons~e.g., Ref.@11#!, we start our
analysis from the so-called cascading limit whena@1. In
this limit w'u3/(9a) and the equation foru approaches the
cubic-quintic nonlinear Schro¨dinger ~NLS! equation. This
scalar equation possesses a familiar class of fundame
bright solitons consisting of a simple bell-shape@there are
also higher-order families in the~211!D case#. These funda-
mental solitons can then be used as a starting point in
search for families of stationary solutions using numeri
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methods. These methods comprise a standard shoo
method at fixeda, and a continuation method allied to solu
tion using a relaxation method for solving an appropriat
defined two-point boundary-value problem for Eqs.~2!. This
latter technique can trace paths of solutions asa varies. We
choose to characterize these solitons by the value of norm
ized total power that is one of the conserved quantities of
system~1!

Ptot5E
A
~ uuu213suwu2!dA. ~3!

Here the integration extends over the appropriate one
two-dimensional infinite cross-sectionA.

The dependence ofPtot on a for a branch of solitons is
usually, at least in the case of a fundamental solution, clos
related to its stability. A necessary condition for stability
the case of fundamental multicomponent solitons is typica
given by a generalized Vakhitov-Kolokolov~VK ! criterion
@12#, which often also appears to be a sufficient condition
soliton stability ~see, e.g., Refs.@13#!. However, the com-
plexity of Eqs.~1! which, for example, possess collapse-ty
dynamics in the~211!D case, may lead to instability of fun
damental solitons even for branches that are supposed t
stable according to the VK criterion@3#. Thus, below we use

FIG. 1. ~a! Bifurcation diagram for solitons~solid curves! and
quasisolitons~dashed curves! of Eqs. ~1! in the ~211!D case.~b!
Expanded portion of~a! for the range 0<a<10. Examples of soli-
tons are shown in Figs. 2–7. Bifurcation points of two-wave so
tons from one-wave soliton families are shown by filled circles. T
results related to quasisolitons are for stationary solutions w
minimal amplitude of oscillatory tails; in that case,P is calculated
for the soliton core only. In this and all subsequent figures, units
dimensionless.
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power versus-a dependence only for classification of solito
families, leaving a full-scale stability analysis for future co
sideration.

II. RESULTS FOR BULK MEDIA

First we present the results for the~211!D case. Figure 1
shows the variation of the normalized total powerPtot , with
the normalized mismatch parametera, for different types of
one-wave and two-wave localized solutions of the system~1!
with s51. The corresponding soliton profiles at vario
points along the presented branches are given in Figs. 2

The first class of localized solutions of the system~1!
consists of one-frequency soliton families for the third h
monicw0, which exist for alla.0 and represent scalar Ke
solitons described by the standard cubic NLS equation

FIG. 2. Examples of different families of one wave solitons.
all diagrams, the thick line corresponds to the third harmonic.

FIG. 3. Examples of~211!D two-wave solitons. Labeling of
examples corresponds to labeling of open circles in Fig. 1.
7.

-

at

follows from the second of Eqs.~1! at u50:

d2w0

dr2
1

1

r

dw0

dr
2aw019w0

350. ~4!

These single-frequency solitons differ from each other
the number of zero crossings in their radial profiles so t
we denote the corresponding families asT0 ~no crossing!, T1
~one crossing!, T2 ~two crossings!, etc. Examples of one
wave solitons belonging to differentTj families are shown in
Fig. 2. Note that the normalized powerPtot is constant for
each of theTi families. For example, for the fundament
one-wave soliton familyT0 ~which are, in fact, Townes soli
tons of Ref.@14#! we havePtot'11.70 for alla.0.

FIG. 4. Examples of~211!D two-wave solitons. Labeling of
examples corresponds to labeling of open circles in Fig. 1.

FIG. 5. Examples of~211!D two-wave solitons. Labeling of
examples corresponds to labeling of open circles in Fig. 1.
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4312 PRE 62KAZIMIR Y. KOLOSSOVSKI et al.
The second class of solutions to Eqs.~1! are genuinely
two-wave bright solitons, described by families of localiz
beams with coupled fundamental and third harmonics. T
simplest way to obtain such solutions numerically is to f
low the two-wave soliton families from the cascading lim
~largea) asa decreases. In this work, we concentrate on
result of following the lowest order two-wave soliton bran
whose profiles have a simple one-hump form in the casc
ing limit. For this family, painstaking numerical continuatio
reveals a highly complex solution path involving restruct
ing of the soliton profile while the correspondingP(a) curve
undergoes several loops~see Figs. 1 and 8!. Inherent in each
loop is a touch with one of theTi families. Such a touch
corresponds to a transcritical bifurcation from the purew
solution, and note@for example, from Figs. 3~c!,~d! that cor-

FIG. 6. Examples of~211!D two-wave solitons. Labeling of
examples corresponds to labeling of open circles in Fig. 1.

FIG. 7. Examples of~211!D two-wave solitons and quasisol
tons. Labeling of examples corresponds to labeling of open cir
in Fig. 1.
e
-

e

d-

-

respond to points C and D on Fig. 1~a!# that the two different
bifurcating branches have opposite signs of theiru compo-
nent. The fact that these bifurcations take place further ill
trates the severity of the restructuring of the soliton profi
that must take place; in the cascading limit the branch
approximately of pureu type, whereas at each bifurcatio
with Ti it is composed of purely a third-harmonic compone
w. Figures 2–7 illustrate the complete restructuring proc
by depicting the soliton profiles in the vicinity of each bifu
cation and turning point of theP(a) curve. Note finally that
the two-wave soliton family also includes the simplest s
called self-similar@for which u(r )}w(r )] solution ~Fig. 1,
point M ) at a51, see Ref.@15# for the details and also Ref
@2#, where its~111!-dimensional counterpart was also be
considered.

The position of the bifurcation point from theT0 branch
can be approximately calculated analytically. Linearizati
of Eqs. ~1! around the solutionw0(r ) gives the eigenvalue
equation

d2u1

dr2
1

1

r

du1

dr
12w0

2~r !u15lu1 , ~5!

together with appropriate boundary conditions. Bifurcatio
occur whenl51. This may also be viewed as the proble
of existence of localized states in the potentialU(r )
522w0

2(r ) with eigenvaluel. Due to the lack of a closed
form analytical expression forw0

2(r ), solutions of Eq.~5!
may be approximated by feeding in the numerical data
w0 or by analytical techniques based on a variational
proximation. Using the latter, based on a simple exponen
trial function, gives the resultw05A8a/3e2rAa. Substituting
this into Eq.~5! and assuming a similar form of trial functio
for u1, one can use a Rayleigh-Ritz method to obta
abi f

(var)5105.8. This agrees to within 2% with the numeric
resultabi f

(num)5104.2. Calculation of bifurcation points alon
the higher-orderTi branches may in principle be carried o
by the same method. However, this is less straightforw
technically because it requires the use of complicated fo
s

FIG. 8. Bifurcation diagram from higher-order families,Ti , i
.3.
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PRE 62 4313HIGHER-ORDER NONLINEAR MODES AND . . .
of trial functions, and it is perhaps more instructive to rely
numerical detection of the bifurcation points. Symmetry
guments dictate that at each bifurcation pointabi f there will
exist two different bifurcating solutions of Eq.~5!: u1(r ) and
2u1(r ). Moreover, each bifurcation is a transcritical a
gives rise to a pair of two-wave branches@w0(r ),
6«u1(r )#, where« is proportional toua2abi f u.

The third class of solutions to Eqs.~1! are the aforemen
tioned quasisolitons that exist in the region of negativea.
We do not discuss quasisolitons here in any detail. A
analysis will appear elsewhere. We simply make the co
ment that the branchSOP bifurcating fromT3 can be con-
tinued up to the boundarya50 separating regular from qua
sisolitons. On the other side of the boundary a sim
quasisoliton state can be found with tiny oscillations in
tail @see Figs. 1 and 7~t,s!#.

We note that there are also higher-order two-wave sol
families that are not linked to the cascading limit soliton
These families bifurcate from theTi ( i>4) families. Each of
these bifurcating branches can be continued smoothly u
a50 like the family SOP. Figure 8 shows the branche
from the next two one-frequency solutionsT4 and T5. We
conjecture that eachTi branch fori .3 also exhibits a unique
bifurcation point, with thea-values of the bifurcation poin
tending to zero asi→`. Initially the two branches bifurcated
from eachTi have the opposite phase of the third-harmo
component. Figure 9 shows the soliton profiles of the ‘‘
phase’’ @u(r 50)w(r 50).0 close to the bifurcation# and
‘‘out-of-phase’’ @u(r 50)w(r 50),0# branches that bifur-
cate fromT4. As a→0, the difference between the branch
becomes negligible as the third-harmonic of all branches
comes out-of-phase with the fundamental component. Me
while the peaks of the third-harmonic broaden and ‘‘spre
out’’ toward r 5`. Close toa50, solitons of the branche
differ only by the fine structure of their wings in the third
harmonic component@see Figs. 7~s,t! and Figs. 9~c,d!#.

FIG. 9. Spreading of the solutions bifurcated from theT4 in the
limit a→0; (u,w) ‘‘out-of-phase’’ solitons, (v,x) ‘‘inphase’’ soli-
tons. Labeling of the profiles is in agreement with labeling in Fig
-
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III. RESULTS FOR PLANAR WAVEGUIDES

It is interesting to compare the~211!D results discussed
above with those for the corresponding~111!D case. The
bifurcation diagram related to the~111!D case is presented
in Fig. 10 and the corresponding examples of soliton profi
are given in Figs. 11–16. We now highlight how, togeth
with many obvious differences in comparison to the diagr
for the ~211!D case in Fig. 1, there are also some striki
similarities as well. Note that in some respects the model
the ~111!D case is simpler since the corresponding stati
ary system~2! with s50 does not depend explicitly onr and
hence represents an autonomous dynamical system in
dimensions. Finding solitons is then reduced to finding h
moclinic trajectories in this 4D phase space.

The first class of~111!D localized waves of system~1!
consists of one-frequency soliton families for the third h
monicw0, which exist for alla.0 and represent scalar Ke
solitons described by the standard cubic~111!D NLS equa-
tion that follows from the second of Eqs.~1! at u50:

d2w0

dx2
2aw019w0

350. ~6!

It can be readily solved exactly giving the well-know
unique single soliton solution

.

FIG. 10. ~a! Bifurcation diagram for symmetric solitons~solid
curves! and quasisolitons~dashed curve! of the ~111!D version of
Eqs. ~1!. ~b! Expanded portion of~a! in the range 0<a<10, 40
<P<65. Dotted curves emerging at zero correspond to inte
multiples of the primary one-wave solutionS1. Formally they rep-
resent multisoliton states consisting of a concatenation of infini
separated single solitons. Points at which branches of two-w
solitons terminate by ‘‘bifurcating’’ from one of these multisoliton
are depicted by filled circles and all occur fora59. The inset to~a!
and the jump (T→N) depicted in~b! are explained in the text.
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w0~x!5
A2a

3
sech~Aax!, Ptot54Aa. ~7!

In contrast to the~211!D case, strictly speaking there a
no other one-wave localized solutions. However, it will
helpful in what follows to consider formal multisoliton state
consisting of a different number of infinitely separated sin
solitons~7!, families of which we denote byS1 ~single soli-
ton!, S2 ~two solitons!, S3 ~three solitons!, etc. In this work
we are mainly interested in families with an odd number
separated solitons:S2i 11 , i 51,2,3, . . . , but wealso investi-
gate ‘‘bifurcations’’ fromS2. Note that, fori .1, Si in fact
denotes more than a single one-wave family, because
single pulse that is glued together can be either positive
negative.

FIG. 11. Examples of~111!D two-wave and one-wave solitons
Labeling of all examples corresponds to the labeling of the o
circles in Fig. 10.

FIG. 12. Examples of~111!D two-wave solitons. Labeling is a
for Fig. 11.
e

f

ch
or

The second class of~111!-dimensional localized solu
tions of Eqs.~1! consists of two-wave bright symmetric sol
tons and is described by families of localized beams w
coupled fundamental and third harmonics. The simplest w
to obtain the lowest order two-wave soliton family is aga
to continue numerically from solitons of the cascading lim
(a@1) given approximately by the expression

u~x!'
6

A11B cosh 2x
, w'u3/~9a!, ~8!

whereB5A1116/a. The first expression foru(x) in Eq. ~8!
is the solution of the corresponding cubic-quintic NLS-ty
equation.

n FIG. 13. Examples of~111!D two-wave solitons. Labeling is as
for Fig. 11.

FIG. 14. Examples of~111!D two-wave solitons. Labeling is as
for Fig. 11.
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The results of our numerical continuation from this lim
ing solution, upon decreasinga is that, like in the~211!D
case, this branch also traces a convoluted path in
(P,a)-plane, involving four ‘‘bifurcations’’ from one-wave
soliton families~from the familiesS1 , S3 , S5, andS7). As
in the ~211!D case, this branch connects to a self-simi
solution ata51 @the pointO in Fig. 10~b!#. In this case, the
self-similar solution is expressible in closed analytical fo
as

u~x!5a sechx, w~x!5bu~x!, ~9!

where the parameterb is the real root of the cubic equatio
63b323b2117b1150, and a2518/(18b213b11).

FIG. 15. Examples of~111!D two-wave solitons. Labeling is a
for Fig. 11.

FIG. 16. Examples of~111!D two-wave solitons, which are no
directly linked to the two-wave solitons of the cascading limit. L
beling is as for Fig. 11.
e

r

However, it is here that the similarity with the (211)-case
ends, as we shall now explain.

First, let us try to motivate what is happening at each
the ‘‘bifurcations’’ from Sj ; for which at first sight it seems
remarkable that each one occurs precisely ata59. Standard
bifurcation analysis~e.g., as in Ref.@16#! allows us to find
the position of the single bifurcation point from the on
wave soliton familyS1 ~7! at a59.0 @point C in Fig. 10~a!#.
As in the~211!D case, the bifurcation is a transcritical wit
one branch emerging to the left of the bifurcation point a
one to the right. This structure is confirmed by the inset
Fig. 10~a! that shows that the branch emerging to the l
undergoes a fold~at pointB), so that on a larger scale bot
branches appear to bifurcate to the right.

Now it seems that this ‘‘local’’ bifurcation fromS1 causes
a topological change in the four-dimensional phase spac
that a global event must also happen at this parameter va
This global event is the possibility of gluing together seve
copies of theS1 back to back and forming a new branch
solitons with several large peaks that bifurcate froma59.
Phenomenologically this is similar to what happens in
SHG case when the parameter equivalent toa passes
through 1@17,18#. A key observation here is that in order t
get a symmetric~even! solution, only an odd number of cop
ies of theS1 may be taken to form solitons in this way. As
convenient shorthand for this global bifurcation of mul
peaked solutions ata59, we have referred to it as a loca
‘‘bifurcation’’ from S2i 11, wherei 51,2,3. . . , although this
is strictly a misnomer.

Numerical continuation beyond pointG of Fig. 10~a!
shows that the two-wave soliton branch approachesa59.0
from the left, where it bifurcates from theS3 asymptotic
one-wave family that has alternative phase between e
single-soliton component. However, we find that this is on
one of a total offour symmetric two-wave solitons that com
out of S3. There are eight in total if you include the chang
of sign of bothu and w. The second bifurcates to the le
from the same~alternating phase! S3 family and differs only
in that the first harmonic has the opposite sign. A repres
tative of this branch, corresponding to pointH in Fig. 10~a!,
is shown in Fig. 12~h!. The two other branches exist fora
.9 and bifurcate from theS3 family where all peaks are in
phase ~positive!, and representatives are shown in F
16~u,v!. With the increase ofa ~cascading limit! these com-
plex multihumped solitons keep their general structure inta
but become more localized. These two branches are
shown in the bifurcation diagram~Fig. 10! but their P(a)
curves lie very close to each other and to theT3 curve to the
right of the bifurcation point.

A similar bifurcation picture is observed ata59.0 for
bifurcations fromS5 and S7 one-wave families. However
because of the increase of the number in possible one-w
multisoliton families themselves, the number of the cor
sponding bifurcated two-component branches also increa
For the even solitons considered in this work we have
following formula to calculate the number of two-wave su
families bifurcating from one-waveSi family: Ni52( i 11)/2

~double that if we count the change signs ofu and v). For
example, there are 16 branches that bifurcate fromS7
branches that haveP584 ata59. Note that in the bifurca-
tion diagram of Fig. 10, in order to clutter, only branch
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4316 PRE 62KAZIMIR Y. KOLOSSOVSKI et al.
directly linked to the cascading limit two-wave family a
shown. Close to bifurcation points, the third-harmonic co
ponents of the depicted branches have neighboring hump
alternating sign and first-harmonic components have
humps of the same sign. Note that these branches all b
cate to the left ofa59. For the branches that bifurcate to th
right not all third harmonic neighboring humps alternate
sign.

It is important to note that none of the multihump solito
branches bifurcating to the left ofa59 can be viewed as
bound states of single partial solitons. Indeed, single o
hump solitons of Eqs.~1! alwayshaveu andw components
inphase~of the same sign! for a,9.0, whereas some of th
individual humps of the of multihump structures bifurcatin
to the left fromSi ( i .1) families haveu andw components
of different signs. To illustrate this point we show in Fig. 1
an enlarged bifurcation diagram in the vicinity ofa59 cov-
ering the first three families,Si , i 51,2,3. Some of the cor
responding examples of soliton profiles plotted ata58.6 are
given in Fig. 18. As they approacha59.0, the separation
between each individual hump~a ‘‘partial soliton’’! in-
creases and the state begins to approach a concatenati

FIG. 17. Bifurcation diagram from the first three one-compon
families Si , i 51,2,3. Asymmetric familyS2 is shown by a thick
line.

FIG. 18. Examples of the two-wave solitons close to bifurcat
point at a59. Weak componentu(x) is enlarged in two bottom
plots. Labeling of the profiles is in agreement with Fig. 17.
-
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ll
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single solitons with slightly overlapping tails. Howeve
some of these partial solitons have out-of-phaseu and w
components and hencecannot existon their own~i.e., with-
out being in superposition with other ‘‘partial’’ solitons!.

Figure 17 shows something even more striking—th
there is also a ‘‘bifurcation’’ from theS2 family. However,
the solitary waves that bifurcate from there are not brig
symmetric but in fact areasymmetricsolitons, see Fig. 19
Also at least one of these asymmetric solutions is born i
symmetry-breaking~pitchfork! bifurcation from one of the
symmetric soliton branches~at the pointOas , see Fig. 17!.
Thus there is a branch of asymmetric solitons that conn
symmetric solitons with a branch of asymptotic antisymm
ric solitons ~the S2 family!. We conjecture that there ar
similar asymmetric solitons that ‘‘bifurcate’’ fromSj at a
59 for all evenj.

In contrast to the~211!D case, we have found no ex
amples~at least considering all bifurcations fromS2i 11 with
2i 11<7) of two-wave solitons that survive down toa50
where they might form a connection with branches of qu
sisolitons existing fora,0. Instead, a representative bran
coming from T7 bends abruptly~at R) at which point a
increases through the pointS until it reachesT at a'3.65,
where another nonlocal bifurcation occurs. In this proce
the third harmonic gradually forms a core with weakly sep
rated wings. AtT, the latter become completely separat
one-wave solitons@see Fig. 15~s,t!#. The solution at the point
T can thus be viewed as a direct sum of two well-separa
one-wave solitons and the soliton at pointN. BeyondT we
were unable to find any similar solutions. This nontrivi
‘‘jump’’ bifurcation is indicated by the vertical arrow in Fig
10.

IV. CONCLUSION

In conclusion, we have investigated and classified high
order soliton families and bifurcation phenomena due
resonant parametric interaction of a fundamental freque
wave with its third harmonic.

In the case of~211!D solitons the picture is consisten

t

FIG. 19. Examples of asymmetric solutions bifurcated from
family S2. Labeling of the profiles is in agreement with Fig. 17.
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with standard theories, albeit the branch we followed fro
the cascading limit connects several distinct soliton type
a nontrivial way. Also the structure of the sets of branch
we found to approach the limita50 could do with further
investigation, perhaps using singular perturbation theo
The relation of these states for positivea to quasisolitons for
negativea will be addressed elsewhere.

In contrast, in the~111!D case the bifurcation diagram i
less clear cut and we have found at least two features~i! the
nonlocal bifurcation of multihumped two-frequency sol
tions that are a consequence of the local bifurcation from
one-humped one-frequency soliton ata59, and~ii ! the so-
called jump bifurcation at the pointT. The first of these is
particularly intriguing since not only symmetric mult
humped states are formed in this way, but also asymme
ones. The second novel bifurcation, the jump, appears rel
to, but not the same as, the so-calledorbit-flip bifurcation
@19#. A dynamical-systems-theory explanation of these n
bifurcation events, perhaps using the Lin-Sandstede me
as in Ref.@18#, would be most interesting.

The conclusion that some of the discovered multihump
states cannot be viewed as bound states of several dis
one-humped states has significant physical implications
demonstrates that a conventional approach to the cons
tion of multihump solitons~see, e.g.,@20#! gives only one
possibility and that the parametric wave mixing may prov
c

.

s.

m.

ic

s.
.

in
s

y.

e

ic
ed

w
od

d
nct
It
c-

another, less straightforward way to create stationary high
order modes. This may find application in many fields
physics where parametric interactions take place.

Stability of the newly discovered soliton families remai
an open question, especially for the~111!D case. Although
usually higher-order soliton families are subject to one
several types of instability, some exceptions are known~see,
e.g.,@21#! and thus a careful stability analysis is worth doin
For the conventional bound-state solitons of NLS-type s
tem of equations, there is practically no hope of stability
shown e.g., in Ref.@22#. However, for the system under con
sideration there is areal possibility of detecting stable mul
tihump solitons because of the abovementioned fact tha
least some of them cannot be viewed as bound states of
or more single~one-hump! solitons.
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